Datacenter Networks: Enforcing Security at the
Software Switch

Kahina Lazri
Orange Labs
kahina.lazri @orange.com

Paul Chaignon
Inria Nancy Grand Est
Orange Labs
paul.chaignon @orange.com

I. INTRODUCTION

The recent Network Function Virtualization (NFV)
paradigm advocates the move of network services from spe-
cialized hardware appliances to software implementations. Not
only does replacing Application-Specific Integrated Circuits
(ASICs) with commodity hardware (e.g., CPUs) reduces costs,
but it also eases the management and evolution of network
services. Network operators and cloud providers are currently
reviewing their hardware appliances to find candidates for
software implementation.

Network security functions are ideal candidates for software
implementations. First, they need to be frequently updated to
defend against new classes of attacks, or even enabled on-
demand to react to transient threats, such as denial-of-service
attacks. Second, they need to retrieve and compute fine-grained
information from packets, information that is typically difficult
to extract with hardware appliances. For example, network
security functions may match signatures in packet payloads,
compute an entropy over several packet fields, or aggregate
statistics for each client in the network.

There is, however, a growing pressure on network perfor-
mance for cloud providers. While network 10-bound work-
loads are becoming more common, datacenters are also mov-
ing to 40Gbps and 100Gbps physical interfaces to cope with
the increasing virtual machine density (number of virtual
machines per physical host). In the meantime, since cloud
providers want to maximize the CPU resources available
to clients, they have a strong incentive to reduce the CPU
consumption of security services on the host; CPU resources
allocated to security services do not generate revenues.

Efficient software designs are therefore required to allow
cloud providers to replace their proprietary appliances with
more flexible software implementations.

In the litterature, several approaches have been considered
to implement software network functions. On the one hand,
network functions running inside virtual machines inherit the
limited network performance of virtualization; to guarantee a
strong isolation, virtualization requires packet copies between
memory boundaries, a significant CPU cost for each packet.
On the other hand, solutions that sacrifice isolation for per-
formance, such as virtual machines with shared memories or
simple processes (including containers), remain inefficient in

Olivier Festor
Telecom Nancy
University of Lorraine
olivier.festor @univ-lorraine.fr

Jérome Francois
Inria Nancy Grand Est
jerome.francois @inria.fr

Priority Source Destination Filter program Action
100 * 10.0.0.1:80 a drop
10 * *:80 b port 1
1 * * drop

TABLE T
EXAMPLE OF OKO MATCH-ACTION TABLE. IF PACKETS DO NOT MATCH &
THEY WILL INEVITABLY RUN AGAINST B.

their processing of packets due to the several context switches
between the software switch and the network functions them-
selves [1].

In this paper, we present Oko, a software switch that can be
extended at runtime with filtering and monitoring programs.
These programs can implement many classical network se-
curity functions and enable their execution as part of Oko’s
operations, removing the need for context switches to other
processes. Oko is based on Open vSwitch [2] and relies on
Berkeley Packet Filter (BPF), a bytecode interpreter [3], to
ensure new programs cannot crash the switch.

In addition, we implement three use cases for our solution:
a stateful firewall and two anti-DDoS programs. We compare
their performance to competing approaches relying on both
virtual machines and processes. Our approach outperforms
virtual machine implementations by 2-3x and processes by
1.7-1.9x.

II. OKO: AN EXTENSIBLE SOFTWARE SWITCH

In this section, we describe our extension of Open vSwitch.
For brevity, we focus on the extension of the OpenFlow table,
the use of the BPF security model, and the run-to-completion
model of Open vSwitch. Further details on Oko are available
in the full paper [4].

A. Design Overview

Oko extends the match-action tables of OpenFlow with an
optional match field referencing a filter program, a stateful
packet matching program, as illustrated in Table I. If all other
fields match the packet headers, the filter program is executed,
with the packet as its sole argument. Filter programs have
a binary result: if they match, their corresponding action is
executed; if they do not match, the lookup continues with rules
of lower priority.

Each filter program may read and write to its maps, per-
sistent data structures allocated on the switch, with some

restrictions detailed in Section II-B. Since they are embedded
as match fields in flow tables, filter programs only impact
whether or not actions of a rule are executed; they cannot
define new actions or write to packets.

Filter programs are written in higher-level languages such
as C or Lua and compiled to BPF bytecode (detailled in
Section II-B). Programs are then sent to switches as object
files embedded into dedicated OpenFlow messages.

B. BPF Security Model

BPF was originally designed as a bytecode and in-kernel
infrastructure to filter packets destined to a userspace capture
application [3]. In the Linux kernel, it evolved into a general
purpose infrastructure [5]. In this section, we describe the de-
sign and implementation of our userspace BPF infrastructure,
tailored for Oko. For brevity, and since our implementation
shares the bytecode and architecture of the Linux implemen-
tation, we focus on the security model.

Before their execution in Oko, BPF programs are analyzed
by the verifier, a piece of software that ensures programs are
safe to execute for Oko. The verifier imposes limits on the
number of instructions and the size of the stack and rejects
programs with out-of-bounds memory accesses, jumps to non-
existing instructions, or null accesses.

In addition, to ensure programs terminate, Oko exposes a
BPF machine abstraction with a computational power equiv-
alent to that of a Decider [6]. This computational power is
enforced in a strict way by rejecting all jumps to previously
visited instructions during a depth-first traversal of the control
flow graph of each program.

In a second traversal of the control flow graph, the verifier
tracks the state of registers to determine if they contain, for
example, a constant, a pointer to a packet, or a potential null
pointer. This information is then used to reject programs with
potential invalid operations such as null memory accesses or
writes to packets.

In Oko, the BPF verifier aims to prevent faulty BPF pro-
grams from crashing the switch. It does not protect against
malicious users; only administrators of the network and the
switch can load new programs.

C. Run-to-Completion Model

As measured in Section III, Oko achieves higher perfor-
mance than colocated processes because it preserves the run-
to-completion model of Open vSwitch. In a run-to-completion
model, each packet is processed from its reception to its
transmission by a single process, as opposed to a model
in which several processes would act on each packet, each
process executing a subset of the overall processing. The
run-to-completion model avoids unnecessary context switches
between different processes that would treat a same packet.

In addition, when several processes act on the same packet,
they inefficiently use the CPU caches. Each process typically
runs on its own core and, as a consequence, the packet content
must be copied to the L1 and L2 caches for each new core
(the two first levels of CPU caches that are usually not shared
between cores).

III. EVALUATIONS
A. Filter Program Examples

We implemented and evaluated three programs, in three
scenarios: 1) as BPF programs running in Oko, 2) as zero-copy
(DPDK Ring Port) DPDK! applications running as a separate
process, and 3) as DPDK applications running inside a KVM
virtual machine with a vhost-user interface. The last two
scenarios represent approaches proposed in the litterature to
implement network functions (cf. Section I).

a) Stateful firewall: The first program implements a
simple connection tracker that can be used in conjonction
to classic OpenFlow rules to act as a stateful firewall. The
connection tracker implements the TCP state machine and
maintains the state of each connection, identified by their 5-
tuple (protocol, source and destination IP addresses and ports),
in a hash table.

b) pOf signature filtering: The second program uses pOf
signatures [7] to identify the system from which a packet
originated and discriminate TCP SYN flood packets from
legitimate traffic. Matching pOf signatures against packets
requires a few arithmetic and bitwise operations (e.g., sub-
stractions and bit shifts), and as such, cannot be expressed
with classic OpenFlow rules. Conversely, with Oko, the filter
program extends the OpenFlow table and performs the oper-
ations required. The program matches and drops packets that
match its pOf signatures.

c) Per source rate-limiting: The last program rate-limits
the number of received packets per source IP addresses using
a token bucket mechanism. Each source IP address observed
is associated a token bucket in a hash table, with its current
number of remaining tokens. A source IP address with an
empty token bucket is blocked by the program. Buckets
are regularly filled with new tokens to reach the desired
throughput.

B. End-to-End Evaluations

Our testbed consists of two servers directly connected with
Mellanox 40Gbps network cards. The device under test hosting
the switch (Oko or vanilla Open vSwitch) has an Intel Xeon
E5-2640 2.6GHz with 20MB of L3 cache and 16GB of
DDR4 memory at 2133MHz. In all experiments, the switch,
the DPDK process, and the VMs run each on a dedicated
core, isolated from the Linux scheduler, with hyper threading
disabled. The switch is configured with a single poll-mode
thread and receive checksum offload disabled. The second
server replays CAIDA packets captures [8].

Each experiment lasts 5 minutes and we report the mean
and the standard deviation over 10 runs.

Results from our evaluation are depicted in Figure 2. As
expected, Oko outperforms the VM applications by 2-3x. As
illustrated in Figure 1, VMs require one to two additional
packet copies per packet to cross the memory boundary, from
the switch to VM and from the VM to the switch. When

IDPDK is a library for fast packet processing that enables kernel bypass
when receiving and transmitting packets from the network card.

< | |
g5 |
gg ! DPDK == VM
& |
g ! ! --e--> Process
-«
S CET S - — ok

! I
! I
L :
wn o
£z ' [Switchf---o{DPDK| |
-e ! AT~ I
= = !] " |
B |
o |
R - I
‘\ K
+
NIC

Fig. 1. The three evaluation setups for the end-to-end performance com-
parison. Packet copies are only necessary when crossing memory space
boundaries.

. VM
B Process
N Oko

~
o
|

Throughput (Mpps)
] w s w o
o =] o =] o

=
o
L

0.0 -

Stateful firewall Rate-limiter

Fig. 2. Comparison of performance for the three programs, with Oko, a vhost-
user KVM virtual machine, and a DPDK Ring Port process. The standard
deviation is below 0.10 for all measurements.

compared to the zero-copy DPDK applications, Oko provides
a 1.7-1.8x improvement of performance. Thanks to the run-to-
completion model of Open vSwitch, Oko benefits from fewer
cache misses, consolidated processing steps (packet parsing
and classification are performed once), and the lack of IPC.

IV. RELATED WORK

Several recent works addressed the issue of extending
software switches to execute arbitrary packet processing [9],
[10], [11], [1].

OFX [9] extends the OpenFlow API to allow SDN applica-
tions to load programs into a switch agent. This agent acts as a
local controller for a few tables at the beginning of the switch’s
OpenFlow pipeline. [10] presents the design of a similar
extension, except that the local controller intercepts packets
by modifying table-miss OpenFlow rules. Because it breaks
the switch’s run-to-completion model—packets are processed
by the local controller in a different execution context than

the forwarding pipeline—, this approach cannot offer the same
performance as Oko and would, in the best case, achieve the
performance of our Process setup (cf. Figure 2).

With NEWS [11], the authors of [10] propose an improve-
ment of their design and integrate the local controller in Open
vSwitch. Although NEWS preserves the run-to-completion
model of Open vSwitch, it runs in the slow path as the authors
do not extend caching mechanisms. As shown in our full
paper [4], extending Open vSwitch’s caching mechanisms is
a required step to achieve high performance.

SoftFlow [1] is probably the work closest to ours. Based
on Open vSwitch, SoftFlow preserves the run-to-completion
model and runs arbitrary programs in the datapath as Open-
Flow actions. SoftFlow does not, however, rely on eBPF to
execute programs; programs cannot be loaded in the switch at
runtime and a faulty program may crash the switch.

V. CONCLUSION

Due to their unique position at the edge of datacenter net-
works, software switch are an ideal target to execute network
security functions; they see and forward all packets from and
toward VMs. However, for the same reason, they are critical
pieces of software, difficult to extend.

In this paper, we presented Oko, a software switch that can
be extended at runtime to execute network security functions.
Oko relies on BPF to prevent crashes from faulty programs.
As our evaluations demonstrate, Oko provides a near 2x im-
provement of performance over existing approaches to execute
software network functions.

This performance improvement allows for the implementa-
tion of a larger set of network security functions in software,
on commodity hardware.

REFERENCES

[1]1 E. J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff, J. Rajahalme,
T. Koponen, and S. Shenker, “SoftFlow: A middlebox architecture for
Open vSwitch,” in Proc. USENIX ATC, 2016.

[2] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of Open vSwitch,” in Proc. USENIX
NSDI, 2015.

[3] S. Mccanne and V. Jacobson, “The BSD packet filter: A new architecture
for user-level packet capture,” in Proc. USENIX Winter Conf., 1993.

[4] P. Chaignon, K. Lazri, J. Frangois, T. Delmas, and O. Festor, “Oko:
Extending Open vSwitch with stateful filters,” in Proc. ACM SOSR,
2018.

[5] J. Corbet. (2014, May) BPF: The universal in-kernel virtual machine.
[Online]. Available: https://lwn.net/Articles/599755

[6] M. Sipser, Introduction to the Theory of Computation, 1st ed.
tional Thomson Publishing, 1996.

[71 G. Bertin. (2016, Aug.) Introducing the pOf BPF compiler. [Online].
Available: https://blog.cloudflare.com/introducing-the-pOf-bpf-compiler

[8] (2012) The CAIDA anonymized 0C48 Inter-
net traces 2002-2003 dataset. [Online]. Available:
http://data.caida.org/datasets/passive/passive-oc48

[9] J. Sonchack, J. M. Smith, A. J. Aviv, and E. Keller, “Enabling practical

software-defined networking security applications with OFX,” in NDSS,

2016.

H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. V. Lakshman,

“Application-aware data plane processing in SDN,” in Proc. ACM

SIGCOMM HotSDN, 2014.

H. Mekky, F. Hao, S. Mukherjee, T. V. Lakshman, and Z.-L. Zhang,

“Network function virtualization enablement within SDN data plane,”

in I[EEE INFOCOM, May 2017.

Interna-

[10]

(1]

